нагрев тел, движущихся с большой скоростью в воздухе или другом газе. А. н. - результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела.
Если полет совершается со сверхзвуковой скоростью культур, торможение происходит прежде всего в ударной волне (См.
Ударная волна)
, возникающей перед телом. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности тела, в
пограничном слое (См.
Пограничный слой)
. При торможении молекул воздуха их тепловая энергия возрастает, т. е. температура газа вблизи поверхности движущегося тела повышается максимальная температура, до которой может нагреться газ в окрестности движущегося тела, близка к т. н. температуре торможения:
T0= Тн+ v2/2cp,
где Тн - температура набегающего воздуха, v - скорость полёта тела, cp - удельная теплоёмкость газа при постоянном давлении. Так, например, при полёте сверхзвукового самолёта с утроенной скоростью звука (около 1 км/ сек) температура торможения составляет около 400°C, а при входе космического аппарата в атмосферу Земли с 1-й космической скоростью (8,1 км/сек) температура торможения достигает 8000 °С. Если в первом случае при достаточно длительном полёте температура обшивки самолёта достигнет значений, близких к температуре торможения, то во втором случае поверхность космического аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие температуры.
Из областей газа с повышенной температурой тепло передаётся движущемуся телу, происходит А. н. Существуют две формы А. н. - конвективная и радиационная. Конвективный нагрев - следствие передачи тепла из внешней, "горячей" части пограничного слоя к поверхности тела. Количественно конвективный тепловой поток определяют из соотношения
qk = а(Те-Тw),
где Te - равновесная температура (предельная температура, до которой могла бы нагреться поверхность тела, если бы не было отвода энергии), Tw - реальная температура поверхности, a - коэффициент конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров тела, а также от других факторов. Равновесная температура близка к температуре торможения. Вид зависимости коэффициента а от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем обстоятельством, что, помимо молекулярной теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.
С повышением скорости полёта температура воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит
Диссоциация и
Ионизация молекул. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная реакция (
Рекомбинация)
, идущая с выделением тепла. Это даёт дополнительный вклад в конвективный А. н.
При достижении скорости полёта порядка 5000 м/сек температура за ударной волной достигает значений, при которых газ начинает излучать. Вследствие лучистого переноса энергии из областей с повышенной температурой к поверхности тела происходит радиационный нагрев. При этом наибольшую роль играет излучение в видимой и ультрафиолетовой областях спектра. При полёте в атмосфере Земли со скоростями ниже первой космической (8,1 км/сек) радиационный нагрев мал по сравнению с конвективным. При второй космической скорости (11,2 км/сек) их значения становятся близкими, а при скоростях полёта 13-15 км/сек и выше, соответствующих возвращению на Землю после полётов к другим планетам, основной вклад вносит уже радиационный нагрев.
Частным случаем А. н. является
нагрев тел, движущихся в верхних слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. длина свободного пробега молекул воздуха соизмерима или даже превышает размеры тела (подробнее см.
Аэродинамика разреженных газов)
.
Особо важную роль А. н. играет при возвращении в атмосферу Земли космических аппаратов (например, "Восток", "Восход", "Союз"). Для борьбы с А. н. космические аппараты оснащаются специальными системами теплозащиты (См.
Теплозащита)
.
Лит.: Основы теплопередачи в авиационной и ракетной технике, М., 1960; Дорренс У. Х., Гиперзвуковые течения вязкого газа, пер. с англ., М., 1966; Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966.
Н. А. Анфимов.