Аэродинамический нагрев - définition. Qu'est-ce que Аэродинамический нагрев
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Аэродинамический нагрев - définition

Аэродинамический обтекатель
  • 6. Обтекатель на седельном тягаче

Аэродинамический нагрев      

нагрев тел, движущихся с большой скоростью в воздухе или другом газе. А. н. - результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела.

Если полет совершается со сверхзвуковой скоростью культур, торможение происходит прежде всего в ударной волне (См. Ударная волна), возникающей перед телом. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности тела, в пограничном слое (См. Пограничный слой). При торможении молекул воздуха их тепловая энергия возрастает, т. е. температура газа вблизи поверхности движущегося тела повышается максимальная температура, до которой может нагреться газ в окрестности движущегося тела, близка к т. н. температуре торможения:

T0= Тн+ v2/2cp,

где Тн - температура набегающего воздуха, v - скорость полёта тела, cp - удельная теплоёмкость газа при постоянном давлении. Так, например, при полёте сверхзвукового самолёта с утроенной скоростью звука (около 1 км/ сек) температура торможения составляет около 400°C, а при входе космического аппарата в атмосферу Земли с 1-й космической скоростью (8,1 км/сек) температура торможения достигает 8000 °С. Если в первом случае при достаточно длительном полёте температура обшивки самолёта достигнет значений, близких к температуре торможения, то во втором случае поверхность космического аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие температуры.

Из областей газа с повышенной температурой тепло передаётся движущемуся телу, происходит А. н. Существуют две формы А. н. - конвективная и радиационная. Конвективный нагрев - следствие передачи тепла из внешней, "горячей" части пограничного слоя к поверхности тела. Количественно конвективный тепловой поток определяют из соотношения

qk = а(Теw),

где Te - равновесная температура (предельная температура, до которой могла бы нагреться поверхность тела, если бы не было отвода энергии), Tw - реальная температура поверхности, a - коэффициент конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров тела, а также от других факторов. Равновесная температура близка к температуре торможения. Вид зависимости коэффициента а от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем обстоятельством, что, помимо молекулярной теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.

С повышением скорости полёта температура воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит Диссоциация и Ионизация молекул. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная реакция (Рекомбинация), идущая с выделением тепла. Это даёт дополнительный вклад в конвективный А. н.

При достижении скорости полёта порядка 5000 м/сек температура за ударной волной достигает значений, при которых газ начинает излучать. Вследствие лучистого переноса энергии из областей с повышенной температурой к поверхности тела происходит радиационный нагрев. При этом наибольшую роль играет излучение в видимой и ультрафиолетовой областях спектра. При полёте в атмосфере Земли со скоростями ниже первой космической (8,1 км/сек) радиационный нагрев мал по сравнению с конвективным. При второй космической скорости (11,2 км/сек) их значения становятся близкими, а при скоростях полёта 13-15 км/сек и выше, соответствующих возвращению на Землю после полётов к другим планетам, основной вклад вносит уже радиационный нагрев.

Частным случаем А. н. является нагрев тел, движущихся в верхних слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. длина свободного пробега молекул воздуха соизмерима или даже превышает размеры тела (подробнее см. Аэродинамика разреженных газов).

Особо важную роль А. н. играет при возвращении в атмосферу Земли космических аппаратов (например, "Восток", "Восход", "Союз"). Для борьбы с А. н. космические аппараты оснащаются специальными системами теплозащиты (См. Теплозащита).

Лит.: Основы теплопередачи в авиационной и ракетной технике, М., 1960; Дорренс У. Х., Гиперзвуковые течения вязкого газа, пер. с англ., М., 1966; Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966.

Н. А. Анфимов.

Аэродинамический профиль         
  • Подъемная сила крыла
  • Примеры профилей крыла
ФОРМА ПОПЕРЕЧНОГО СЕЧЕНИЯ КРЫЛА, ЛОПАСТИ ИЛИ ДРУГОЙ КОНСТРУКЦИИ
Профиль (аэродинамика); Профиль крыла; Хорда крыла; Профиль аэродинамический
В аэродинамике профиль — форма поперечного сечения крыла, лопасти (пропеллера, ротора или турбины), паруса или другой гидроаэродинамической конструкции.
обтекатель         
м.
Устройство для придания частям самолета, судна и т.п. обтекаемой формы.

Wikipédia

Обтекатель

Обтека́тель — специальная конструкция, облегчающая обтекание объекта потоком газа или жидкости, что ведёт к уменьшению аэродинамического сопротивления движению. Обтекатели нашли широкое применение в технических устройствах, движущихся с большой скоростью, таких как автомобили и самолёты, так как их введение увеличивает возможную скорость и снижает расход топлива. Особое значение среди всех видов обтекателей для двигающихся аппаратов имеет головной обтекатель, так как именно он в значительной мере определяет сопротивление воздуха.

Exemples du corpus de texte pour Аэродинамический нагрев
1. Особенности полета ГЧ МБР таковы, что на конечном участке траектории в плотных слоях атмосферы (высоты менее 100 км ) боеголовка испытывает сильнейший аэродинамический нагрев - температура поверхности конструкции достигает 6200 градусов Кельвина.
Qu'est-ce que Аэродинам<font color="red">и</font>ческий нагр<font color="red">е</font>в - définition